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Novel conditioning technique for systems subjected
to constraints

R.J. Mantz, H. De Battista, F. Garelli, F.D. Bianchi

Abstract— A sliding mode reference conditioning for con-
strained linear systems is proposed which presents some dis-
tinctive features. In fact, contrarily to other control solution s,
the sliding mode conditioning loop completely avoids saturation,
so that the prescribed closed-loop behavior is never abandoned.
As a consequence of this property as well as of the robustness
features of sliding mode control, the closed-loop dynamics of
the conditioning circuit and of the main loop are completely
independent one of each other. So, no further analysis is necessary
to guarantee stability of the controlled system during sliding
mode conditioning.

Index Terms— reference conditioning, constrained systems,
sliding mode.

I. I NTRODUCTION

The interest in developing control strategies to reduce the
undesirable effects of restrictions has led to an increasing
number of publications addressing the problem from different
viewpoints. For instance, using concepts of LQR (Turner and
Walker, 2000), LPV (Wu and Grigoriadis, 1999), LMI’s (Mul-
der et al., 2001), SM (sliding mode) (Mantz and De Battista,
2002), robust control (Yoonet al., 2002), etc. Many of these
control solutions fit within the well-known ‘two-step’ design
paradigm (Kothareet al., 1994). In this methodology, the
controller is firstly designed neglecting the restrictions(first
step) and then a correction loop is incorporated which is active
only when restrictions occur (second step). The aim of the
auxiliary loop is to guarantee graceful degradation from the
performance of the system without restrictions. Particularly,
this work is exclusively concerned with the design of this
correction loop (second step), whereas the linear controller
design step is omitted.

Generally, limitations occur during transient responses to
external excitations such as reference changes and distur-
bances. Then, many proposals can be interpreted as the
conditioning of the reference to avoid problems caused by
actuator saturation. For instance, one of the first and most cited
contribution is the anti-windup (AW) conditioning technique
developed for PID controllers (Hanuset al., 1987). Although
the conditioning is applied to the integral state of the con-
troller, it is deduced from concepts of ‘realizable reference’
(Penget al., 1998) (This signal is interpreted as the reference
that if it had been applied to the controller from the beginning,
it would not have driven the actuator into saturation, i.e. the
controller output would have coincided all the time with the
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input to the plant). A modified version of the conditioning
technique is the so-called generalized conditioning technique
proposed by Walgama and coworkers (1992). In this approach,
a reference filter is incorporated, and conditioning is carried
out on the filtered signal instead of directly on the reference.
Helpfully, this generalized technique can be applied to a larger
class of controllers. Among other contributions, Seronet al.
(1995) and Hippe (2001) propose shaping the reference in a
nonlinear fashion.

In this context of reference conditioning, a novel technique
is introduced in this note. This new conditioning algorithm
is developed within the framework of variable structure sys-
tems undergoing sliding regimes. This approach provides an
extremely simple solution with very attractive features that
differentiate it from other proposals. In fact, the proposed
conditioning of the reference completely avoids the occurrence
of restrictions, maintaining the main loop always closed. Then,
this algorithm can be applied without distinction to both
open-loop stable and unstable plants. Additionally, sincethe
conditioning is carried out on the reference and the main
loop is always closed, the main loop (linear) dynamics is
affected neither by the restriction nor the conditioning loop.
Moreover, due to the robustness properties of SM control,
the conditioning loop dynamics is insensible to the process
under control. Thus, the dynamics of the main control loop
and of the SM conditioning loop are independent one of each
other. This property has important implications. In fact, an
additional study to investigate the stability of the controlled
system during SM compensation is not necessary. Further-
more, the implementation and tuning of the SM algorithm
is straightforward even in the case of a preexisting linear
controller.

In contrast with other variable structure controllers, theaim
of the control strategy proposed here is not to evolve in SM
towards the equilibrium point. Contrarily, the sliding regime
is intended as a transitional mode of operation. It is aimed
at conditioning the rate of change of the reference in order
to avoid that the controller output exceeds the limits of the
actuator output or other variable of interest. Hence, once the
system becomes able to evolve towards the linear operating
region without reference conditioning, the SM compensating
loop becomes inactive. Because of the nature of the proposed
SM compensation, the main drawbacks of variable structure
control (i.e. chattering and reaching time) can be ignored in
the current application. In fact, the sliding regime is confined
to the low-power side of the system, hence allowing the use
of fast electronic devices. Besides, the conditioning loopis
inactive until the system state reaches by itself the sliding
surface, so there is no reaching mode.
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Fig. 1. Proposed reference conditioning via sliding mode.

II. AW REFERENCE CONDITIONING ALGORITHM VIASM

Fig. 1 illustrates the control system with the proposed
conditioning of the reference. Two loops can be distinguished:
the main control loop and the SM reference conditioning
loop. P represents the process under control which may be
either open-loop stable or unstable.Ka is the actuator.C is
a minimum phase rational controller of orderm designed to
accomplish the control specifications during linear operation.
τi represents the set of SM feedback gains.F is a reference
filter of first order similar to the one introduced by Walgamaet
al. (1992) It is worthy to mention that the filter has not of itself
the aim of avoiding saturation after reference changes. In fact,
this obvious solution would lead to an extremely conservative
design. Contrarily, the compensation lies on the conditioning
of the filter output as a function of the restrictions.

The actuator nonlinearity is characterized by

Ka :







up = up if u > up

up = u if up ≤ u ≤ up

up = up if u < up.

(1)

In this paper, saturation and rate limiting, which are typical
actuator nonlinearities, are considered. In the former nonlin-
earity, the constant valuesup andup are the upper and lower
limits of the actuator. In the latter case,up andup are linear
increasing and decreasing functions of time.

Besides, the dynamic behavior of the processP , the con-
troller C and the filterF are described by

P :

{

ẋp = Apxp + bpup

y = cpxp,
(2)

F :

{

ẋf = λf (xf − r) + w

rf = xf ,
(3)

C :

{

ẋc = Acxc + bce

u = ccxc + dce.
(4)

Then, the open-loop dynamics of the conditioning loop is
given by

[

ẋc

ė

]

=

[

Ac bc

0 λf

] [

xc

e

]

+

+

[

0
λf (y − r) − ẏ

]

+

[

0
1

]

w (5)

u = ccxc + dce. (6)

A. Conditioning algorithm for biproper controllers

For clarity of presentation, the conditioning algorithm is
introduced first for biproper controllersC, i.e. for controllers
having dc 6= 0 (Note that PI controllers fall within this
category). In the following subsection, the proposed algorithm
is generalized to cope with a larger class of controllers.

In order to avoid windup by conditioning the filtered refer-
encerf , the following switching law is proposed:







w = w+ if s > 0
w = 0 if s = 0
w = w− if s < 0

(7)

where
s(up, xs) = up − u, (8)

beingxs = col(xc, e).
The objective of this discontinuous law is enforcing the

following behavior (Utkinet al., 1999):

lims→0+ ṡ < 0
lims→0− ṡ > 0.

(9)

In conventional VSS, this behavior leads to a sliding regime
on the surfaces ≡ 0. Conversely, in the current application
this is not the case. Actually, the switching law (7) determines
two sliding surfaces:

S = {xs|up − u = 0}
S = {xs|up − u = 0}.

(10)

Whilst the actuator operates in its linear region,s(up, xs) =
up −u = 0 and the control signal is maintained atw = 0, i.e.
no correction is made. Nevertheless, whenu tries to exceed its
upper bound (s(up, xs) < 0), i.e tries to crossS, the control
signal w switches tow−. Similarly, whenu intends to fall
below its lower bound (s(up, xs) > 0) and crossS, w switches
to w+. Then sliding regimes are feasible on the surfacesS and
S.

A necessary condition to accomplish (9) is thats(up, xs)
must be of relative degree one with respect tow (Sira-Raḿırez,
1989). Note that this is true for all biproper controllers. In fact,
the errore appears implicitly in (8) through the forward gain
dc. Then, properly choosing the switching levelsw±, sliding
regimes are established once the sliding surfaces are reached
(i.e. once the controller output reaches one of its bounds).A
sliding regime onS or S implies that the filtered reference
rf is continuously adjusted so that the controller output never
goes outside the linear region of the actuator. Thus, windup
and other related problems are completely avoided.

During a sliding regime,xs is constrained to the sliding
surface, thus existing a linear dependence among the state
coordinates. In fact, from (8) and (6), the errore can be
expressed as a function ofxc: e = d−1

c (ûp − ccxc) where
ûp is used to represent either of the saturation limitsup or
up. This dependence can be used to obtain the closed-loop
sliding dynamics (Hunget al., 1993). Effectively, replacing
this equation in (5), the reduced-order sliding dynamics yields:

ẋc = Qcxc − bcd
−1
c ûp (11)

Qc = (Ac − bcd
−1
c cc). (12)
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As it can be easily checked, the eigenvalues ofQc are the zeros
of the transfer function ofC. SinceC is a minimum phase
controller, the SM conditioning loop is stable. This dynamics is
not seen from the controller output which is fixed atûp during
the sliding regime. Moreover, this (inverse) dynamics presents
interesting robustness properties (note that it depends only
on controller parameters) that will be formalized immediately
after the generalization of the method.

B. Generalization to strictly proper controllers

In this subsection, the algorithm previously introduced is
extended to handle minimum phase strictly proper controllers.

The dynamics of the conditioning loop is still represented
by (5)–(6) where nowdc = 0. Let ρ be the relative degree of
the controllerC with respect to its inpute. It is convenient
to transform the open-loop conditioning dynamics (5)–(6) into
the normal canonical form:







































u̇1 = u2

u̇2 = u3

· · · = · · ·
u̇ρ−1 = uρ

u̇ρ = aµµc + aηηc + b e

η̇c = Pµc + Qηc

ė = λfe + λf (y − r) − ẏ + w

u = u1

(13)

whereµc = [ u1 u2 · · · uρ ]> comprises the controller
output and its first(ρ − 1) derivatives,ηc is a set of(m − ρ)
linearly independent state coordinates, andb 6= 0. In this form,
the zeros of the transfer function ofC are the eigenvalues of
Q.

Unfortunately, for strictly proper controllers (ρ > 0), (8)
does not verify the reaching condition (9) to establish a sliding
regime on the associated sliding surfaces (Sira-Ramı́rez, 1989).
To satisfy this condition, the switching law is reformulated as
follows:

s = up − u −

ρ
∑

1

τi+1u
(i) (14)

whereu(i) is theith derivative of the controller outputu. This
new switching function has relative degree one with respect
to the control signalw. Actually, it can be rewritten in terms
of the new coordinates̃xs = col(µc, ηc, e):

s(up, x̃s) = up −

ρ
∑

1

τiui − τρ+1(aµµc + aηηc + b e) (15)

whereτ1 = 1, and differentiating with respect to time once, it
appears the control signalw. This switching law determines
two sliding surfaces

S = {x̃s|s(up, x̃s) = 0}
S = {x̃s|s(up, x̃s) = 0}.

(16)

associated to the upper and lower limits of the actuator,
respectively. WithŜ = {x̃s|s(ûp, x̃s) = 0}, we will refer
without distinction to any of these surfaces. Once any of
these sliding manifolds is reached, a sliding regime will be
established on it provided the signal levelsw± are selected
appropriately.

Again, during a sliding regime on̂S, there exists a linear
dependence among the state coordinates. In fact,s(ûp, x̃s) = 0
can be solved fore and replaced in (13). Thus, the reduced-
order sliding dynamics yields (Hunget al., 1993)































u̇1 = u2

u̇2 = u3

· · · = · · ·
u̇ρ−1 = uρ

u̇ρ = τ−1
ρ+1 (ûp −

∑ρ
1 τiui)

η̇c = Pµc + Qηc.

(17)

Clearly, during SM operation, the dynamics of the controller
output is governed by the firstρ files of (17). Consequently,
if the coefficientsτi are chosen so that the roots of the
polynomial

∑ρ
0(τi+1s

i) are all real and negative, then the
sliding regimes onŜ will be stable andu will not present
overshoots. That is, once a sliding regime is established, the
controller output will tend exponentially towards its saturation
limit until the system reenters linear operation. Consequently,
the actuator never saturates. On the other hand, the hidden
dynamics of the controller will be governed by the eigenvalues
of Q, i.e. by the zeros of the transfer function ofC. SinceC

is of minimum phase, this hidden dynamics is also stable.
Remark 1: Because of the robustness properties of sliding

modes, the dynamics of the conditioning loop is independent
of the main loop dynamics. Effectively, the second and third
terms of the right hand side of (5) can be interpreted as the
disturbance and controlled vector fields of the conditioning
loop, respectively. Clearly, the disturbance satisfies thematch-
ing condition (Sira Raḿırez, 1988), i.e.col(0, λf (y−r)−ẏ) ∈
span (col(0, w)) Then, as (17) and (11) corroborate, the SM
conditioning dynamics is insensible to the process outputy

and its derivativeẏ. Moreover, the dynamics of the controller
output is completely governed by the feedback gainsτi.
Effectively, neither the processP nor the main loop controller
C affects the dynamics of the control signalu while the SM
conditioning loop is active.

Remark 2: The dynamics of the main loop, with inputrf and
outputy, is also independent of the conditioning loop (being
active or inactive). In fact, the main loop dynamics remains
governed by the controllerC. Two facts make this possible:
(1) The conditioning circuit acts on the filtered referencerf ,
taking no action within the main loop; (2) The conditioning
circuit ensures that no limitation occurs, guaranteing closed-
loop linear operation of the main loop. Thus, the dynamics of
the main loop is always described by

[

ẋp

ẋc

]

=

[

Ap − bpdccp bpcc

−bccp Ac

] [

xp

xc

]

+

+

[

bpdc

bc

]

rf

y = [ cp 0 ]

[

xp

xc

]

.

(18)

Then, the eigenvalues of the main loop dynamics are
completely independent of the SM conditioning loop.

The independence of both loops assures that the activation
of the conditioning system affects neither the stability nor the
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dynamics of the main loop. Consequently, contrary to what
happens with previous control solutions found in literature, no
further analysis is necessary to guarantee the stability ofthe
system in the presence of the compensating loop. Moreover,
since the main loop is always closed even in the presence of
constraints, i.e.u = up, the conditioning technique can also
be applied to unstable plants.

III. I LLUSTRATIVE EXAMPLES

A. Example 1

Consider an unstable plant together with aPI controller.
The transfer functions of the plant and controller are

P (s) =
1

s − 10
(19)

C(s) = 50
s + 10

s
. (20)

Note: The design ofC corresponds to the first step of the
control system design, and falls beyond the scope of this work.
Here, both the plant and the linear controller are given and an
AW loop is designed for them to degrade gracefully from the
linear response.

The performance of the closed-loop systems in the absence
of actuator constraints is observed in Fig. 2. The response of
the controlled variabley (2a) showing a25% overshoot, is
assumed to be the desired response of the system. Fig. 2b
depicts the control signal.

Fig. 3 shows the simulation results for the case of a bounded
actuator. In this case, the actuator output is limited toup ∈
[−15, 15] whereas its time derivative is constrained tou̇p ∈
[−600, 600]. It can be observed in Fig. 3b that rate limiting
and saturation occur until the actuator enters its linear region
at tL (up = u). As a result, a large overshoot and a long
settling time appears on the controlled variabley, revealing a
typical windup behavior (solid line of Fig. 3a).

To avoid windup, the proposed SM reference conditioning is
employed. For this purpose a first order filter is incorporated.
Its pole is chosen much faster than the process dynamics
(λf = −50) so that it does not appreciably affect by itself
the linear response. The auxiliary control signalw switches
according to the switching laws(up, xs) = up − u. The
claimed behavior of the SM conditioning loop is corroborated
in Fig. 4. The solid line of Fig. 4a depicts the process output
y whereas Fig. 4b displays the controller outputu when the
SM conditioning is employed. For comparative purposes, the
linear response (i.e. without saturation) is repeated in dashed
line. Fig. 4b corroborates that the controller output neverfalls
into restrictions (in fact,u coincides withup all the time),
thus completely eliminating windup. Clearly, a sliding regime
is established immediately after the reference step avoiding
rate limiting. Fromt1, the sliding mode is devoted to avoid
actuator saturation. Finally, att2 the SM correction becomes
inactive. The conditioned referencerf , i.e. the reference signal
that completely avoids constraints, is also displayed in Fig. 4a
(dotted line). This figure shows that the large overshoot is
effectively corrected, satisfying the aim of the AW loop of
degrading as gracefully as possible from the linear response.
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Fig. 2. (a) Controlled variabley, and (b) control signalu of the system
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

a

With constraints

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−60

−40

−20

0

20

40

b

y 

u,  u
p
 

t 

t t
L
 

t
L
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Fig. 4. a) Controlled variabley and filtered reference (dotted), and (b) control
and actuator outputsu ≡ up of the constrained system with SM conditioning.
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Remark 3: No control effort is done to enforce the state to
reach the sliding surface. Moreover, evolution within the linear
region is the desired mode of operation. So, no attention has
to be paid to the reaching mode.

Remark 4: As a result of the SM anti-windup conditioning,
the controller and the actuator outputs coincide at every time.
Since no saturation occurs, the main control loop remains
closed all the time and its dynamics is not altered by the
conditioning loop. So, no further stability analysis of themain
loop is necessary.

Remark 5: The SM conditioning can be applied to open-loop
unstable plants. It can be seen that, in order to force operation
in the linear region, the process instability is transferred to the
reference. This fact, in other context, has been already stressed
in Seronet al. (1995). Effectively, during the sliding regime
on S, rf increases exponentially. Obviously, this mode of
operation finishes when the system reenters the linear region.
Effectively, if the closed-loop dynamics of the main loop is
faster than the one corresponding to the unstable poles ofP ,
the errore will diminish rapidly. Then, whenrf approaches
r, the main loop will be able to operate in the linear region,
deactivating the SM compensation. From then,rf converges
to r with the time constant of the filterF .

B. Example 2

Consider now the following example. The equation

ẋ =





0 .01 0
−50 −1 1
−.001 0 0



x +





0
50

.001



 r (21)

corresponds to a closed-loop system. The first two files de-
scribe the dynamics of the process whereas the last is the
integral state of thePI controller. It is supposed here that,
for safety operation of the system, the variablex2 must be
upper-bounded tox2lim = 20. Naturally, it is assumed thatx2

is accessible.
To fit within the general framework previously developed,

the controller and process should be redefined. Effectively,
equation (21) can be reinterpreted as a process described by
the first file and a strictly proper controller described by the
last two files.

In order to meet with this constraint onx2 (which is here
seen as a control signal), an SM conditioning of the filtered
reference is proposed. Unfortunately, the obvious switching
law s(x) = x2lim −x2 does not have relative degree one with
respect tow. So, a sliding regime cannot be established on it
andx2 might cross the surfaces(x) = 0 and evolve towards
dangerous operating regions. To overcome this obstacle, a new
switching law defined bys(x) = x2lim

− x2 − τ ẋ2 = 0
is proposed. Note that error feedback is implicit inẋ2 =
−x2 +50e+x3. To ensure safety operation, the SM reference
conditioning begins even beforex2 reaches its upper-bound.
During the sliding regime,x2 converges exponentially towards
its limit value with time constantτ . Fig. 5a shows the smooth
convergence ofx2 to its bound atx2lim

= 20 with the
fast sliding dynamics. Fig. 6 displays the associated system
trajectory in the phase plane(x2, ẋ2). The SM protection acts

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

20

30

40

System response with and without SM correction

a

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A 

B 

x
2
 

x
1
 

 t 

 t 

b
Fig. 5. System response with and without SM conditioning, a)variablex2,
b) variablex1.

−5 0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

20

25

30

35

40

Phase trajectories with and without SM correction

x
2
 

. 

A 

B 

x
2
 

x
2
=20 

Fig. 6. Phase trajectories in(x2, ẋ2) of the system response with and without
SM conditioning.

along the lineAB. Obviously, the slope of the sliding surface
as well as the sliding dynamics is given by the sliding gain
τ . Once the system trajectory points towards the safety region
from both sides of the sliding surface, the system naturally
evolves in this region without reference conditioning towards
its equilibrium point. Finally, Fig. 5b shows the graceful
degradation of the controlled variablex1 caused by the SM
conditioning.

Remark 6: As this example shows, the proposed SM algo-
rithm originally developed to cope with actuator nonlinearities
can be extended to overcome problems associated to other kind
of restrictions.

IV. CONCLUSIONS

An anti-windup algorithm based on the reference condition-
ing concept is developed using tools of sliding mode control.
The most distinctive feature of the proposed methodology
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is the independence of the main control loop and SM con-
ditioning loop dynamics. Effectively, since the conditioning
loop acts on the reference and nonlinearities are completely
avoided (in contrast with other approaches that are intended
to minimize the degradation in the presence of the problem),
the closed-loop linear behaviour of the main loop is never
abandoned. Consequently, no further analysis is necessaryto
guarantee the stability of the main loop. In addition, due tothe
robustness properties of SM control, the conditioning loopdy-
namics is insensible to the process output evolution. Moreover,
the controller output dynamics is completely governed by the
gains of the designer-chosen switching function. Finally,the
implementation and tuning of the SM conditioning algorithm
is extremely simple.
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